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In this paper, we propose a theory of quantum logics which is general enough 
to enable us to reexamine previous work on quantum logics in the context of 
this theory. It is then easy to assess the differences between the different systems 
studied. The quantum logical systems which we incorporate are divided into two 
groups which we call "quantum propositional logics" and "quantum event 
logics." We include the work of Kochen and Specker (partial Boolean algebras), 
Greechie and Gudder (orthomodular partially ordered sets), Domotar (quantum 
mechanical systems), and Foulis and Randall (operational logics) in quantum 
propositional logics; and Abbott (semi-Boolean algebras) and Foulis and Randall 
(manuals) in quantum event logics. In this part of the paper, we develop an 
axiom system for quantum propositional logics and examine the above structures 
in the context of this system. 

1. I N T R O D U C T I O N  

The genera l  te rm q u a n t u m  logic has been  used  to refer  to a large 
a s so r tmen t  o f  ma thema t i ca l  systems,  and  it is na tu ra l  to ask how all these  
s tructures  compare .  In  o rde r  to de te rmine  which  o f  these s tructures  are 
genera l i za t ions  o f  o ther  s tructures,  or, in fact,  which  are equiva lent ,  we 
in t roduce  a theory  which  is genera l  enough  to encompass  all o f  these  
m a thema t i ca l  systems.  We may  then  examine  par t i a l  Boolean  a lgebras  (see 
the work  o f  K o c h e n  and  Specker ,  1967), o r t h o m o d u l a r  pa r t i a l ly  o rde r e d  
sets (see Greech ie  and  G u d d e r ,  1973), q u a n t u m  mechan ica l  systems (see 
D o m o t a r ,  1974), s emi -Boo lean  a lgebras  (see Abbo t t ,  1967), and  manua l s  
and  thei r  a s soc ia t ed  ope ra t i ona l  logics (see Foul i s  and  Randa l l ,  1979) in 
the contex t  o f  this theory ,  as well as inves t iga t ing  all the in t e rmed ia t e  
systems.  
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The current work on quantum logics is divided into two distinct groups, 
which we call here quantum event logics and quantum propositional logics. 
The work of Abbott  on semi-Boolean algebras and Foulis and Randall on 
manuals falls into the general category of quantum event logics. The other 
theories mentioned above fall into the category of quantum proposit ional 
logics. Quantum event logics lie "under"  quantum propositional logics in 
the sense that the latter are shown to be the former modulo an equivalence 
relation. This connection between the two approaches,  in the specific case 
of manuals and operational logics, has been studied for some time by Foulis 
and Randall. More will be said about quantum event logics and this 
connection in the second part of  this paper. In addition, many of the 
examples and counterexamples mentioned here will be included instead in 
Part II  of  this paper, as they are derived from the work on manuals which 
will be discussed there. 

Most of  the work that has been done on quantum logics has been in 
the area of  quantum propositional logics, and in this part  of  the paper  we 
will investigate that work. There are two distinct approaches that have been 
used in this area: one may begin with a set of  elements on which is defined 
an orthogonality relation, or one may begin with a set of  Boolean algebras 
which are pasted together in some way. Both approaches are considered 
here, and we show the connections between the two. 

The reader is referred to the above-mentioned references for the motiva- 
tion and origins of  each of  the individual structures listed above. Here, we 
will begin with these structures and develop an underlying theory which 
will enable us to compare them. We conclude at the end of the paper  with 
a diagram which includes all these structures and illustrates the connections 
between them. 

2. ORTHO-ALGEBRAS 

We define here a structure which is sufficiently general to subsume all 
previously mentioned quantum propositional logics, but which is at the 
same time sufficiently small to be interesting. The system we propose is 
what we call an ortho-algebra. 

Definition. An ortho-algebra is a set L, a partial binary relation 3- on 
the set L, a partial operation O): L • L ~ L such that a �9 b is defined if and 
only if a J_ b, a map ': L ~  L denoted a ~ a '  for all a ~ L, and two elements 
O, 1 ~ L, such that for all a, b c L, the following are satisfied: 

(i) I f  a_Lb, then b•  and aGb=bO)a; 
(ii) a Z O a n d  a O O = a ;  
(iii) a 3_ a '  and a G a '  = 1 ; 
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(iv) if a_L(a't~b), then b = 0 ;  
(v) if a•  then a = 0 ;  
(vi) if a_Lb, then a.l_(a@b)' and b'=a@(aOb)'.  

From this, we easily see that the following facts are true: 

Proposition. Let L be an ortho-algebra, a, b ~ L. Then (a) 0' = 1, 1' = 0; 
(b) ( a ' ) ' =  a ;  (c) if a<~b= aOc, then b =  c; (d) if aOb= 1, then b =  a'. 

In an ortho-algebra, we do not require that the orthogonal sum 
operation be associative. We say that an ortho-algebra L is associative if, 
for all a, b, c in L, the following condition is satisfied: if a 3_ b and c 3_ (a G b), 
then b.Lc and a•  and aO(bt~c)=(aGb)~)c. 

Definition. Let L be an ortho-algebra with a, b ~ L. We say a - b if and 
only if there is a c s L with a 3- c and a �9 c = b. 

It is easily shown that the relation -< is reflexive and antisymmetric. 
In general, though, it will not be transitive. One can show, however, that 
under the additional constraint of  associativity, - is transitive and hence 
a partial ordering. It is possible for the relation <- to be transitive on an 
ortho-algebra which is not associative. Hence the class of ortho-algebras 
on which -< is transitive constitutes an intermediate system between ortho- 
algebras and associative ortho-algebras. The following facts will be useful 
later on, and are easily seen to be true: 

Proposition. Let a, b be elements in an ortho-algebra L. Then (1) a --- b 
if and only if b'_< a ' ;  (2) a -< b if and only if a 3- b';  (3) if L is associative 
and a • b, then x -< a, b implies x = 0. 

3. BOOLEAN ATLASES 

We now consider the second approach to quantum propositional logics, 
and begin with a family of  Boolean algebras. The most general structure 
here is that of  a Boolean atlas, as defined below. We will show that Boolean 
atlases are equivalent to ortho-algebras. We examine Boolean atlases now 
for two reasons: much of the work done on quantum propositional logics 
is l~resented from this viewpoint, and many of the concepts we will define 
on an ortho-algebra are more intuitively clear in the context of  Boolean 
atlases. 

Definition. A family (B/: i ~ I )  of  Boolean algebras is called a Boolean 
atlas if it satisfies the following conditions (here, we use the notation ---i, 
0i, li, C~, Mi, J~ to refer to the order relation, the 0 and 1 elements, the 
complement,  the meet, and the join, respectively, in a Boolean algebra B~): 
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(i) I f  Bi c_ Bj, then Bi = Bj; 
(ii) i f a ,  b ~ B i n B j ,  t h e n a < - ~ b i f a n d o n l y i f a < - j b ;  
(iii) 1;= 1 i and 0~=0j for all i,j~ I; 
(iv) if a c Bin Bj, then Ci(a) = Cj(a);  
(v) if a,b~Bic~Bj and if either Mi(a,b)=O or M j ( a , b ) = 0 ,  then 

M~(a, b) = Mj(a, b) and J~(a, b) = Jj(a, b). 

Notice that we may have a, b ~ B i n  Bj and yet M~(a, b) ~ M](a, b) and 
J~(a, b) # Jj(a, b). We define a Boolean manifold to be a Boolean atlas which 
satisfies the condition: if a, b~B~nBj, then Mi(a, b ) = M j ( a ,  b) and 
Ji(a, b)= Jj(a, b). 

We will need the following definitions: 

Definitions. Let ~ = (B~: i~ I )  be a Boolean atlas, a, b~UB~ and S c 
U B~. Then we say the following: 

(a) a and b are orthogonal if there is an i ~ I  with a, beB~ and 
Mi(a,b)=O; a subset S is called pairwise orthogonal if a and b are 
orthogonal for all a, b in S. 

(b) a and b are compatible if there is an i ~ ! with a, b ~ B~; a subset 
S is called pairwise compatible if a and b are compatible for all a, b in S. 

(c) S is jointly compatible if there is an i~ I with S_c Bi. 
(d) S is jointly orthogonal if there is an i e I with S__c_ B~ and S is 

pairwise orthogonal. 

We will return to Boolean atlases later. First, we must develop addi- 
tional structure on ortho-algebras. 

4. A D D I T I O N A L  C O N D I T I O N S  ON ORTHO-ALGEBRAS 

A subset A of an ortho-algebra L is called pairwise orthogonal if a _L b 
for all a, b ~ A. We wish to define the notion of  joint orthogonality on finite 
subsets. Intuitively, we will say a set A = {al, a: . . . ,  a,} is jointly orthogonal 
if  the orthogonal sum a l G  a20)" �9 .03 a,  exists (that is, the sums are defined 
for any rearrangement and any placing of parentheses). To make this 
notation precise, let A be a finite subset of  L with n elements. We use 
induction on n to define orthogonality of  A, and to define the orthogonal 
sum of A, denoted Y~ A, which is defined if and only i fA is jointly orthogonal. 
I f  n = 2, say A = {a, b}, we say A is jointly orthogonal if a_L b, in which 
case ~ A = a O  b. I f  # A  = n, we say A is jointly orthogonal if the following 
three conditions are satisfied: 

(i) For all a c A, A -  {a} is jointly orthogonal. 
(ii) For all aeA,  a_L(A-{a}). 
(iii) a • ( A - { a } ) = b O ( A - { b } )  for all a, b in A. 
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In this case, we define ~A=aO(A-{a} )  for any a in A. Clearly, if 
a subset A is jointly orthogonal then it is pairwise orthogonal. However, 
the converse is not true. 

Let L be an ortho-algebra, A a subset of L with a, b in A. Then the 
pair a, b is said to have a Mackey decomposition in A if there exists a jointly 
orthogonal triple {ao, bo, c} in A such that a = a0 0  c and b = bog c. If the 
triple is unique, the pair a, b is said to have a unique Mackey decomposition 
in A. We say that a, b in L are compatible if they have a Mackey decomposi- 
tion in L, and we say they are uniquely compatible if they have a unique 
Mackey decomposition in L. It is possible for two elements to be compatible 
yet not uniquely compatible. An ortho-algebra L is said to have the unique 
Mackey decomposition (UMD) property if every compatible pair is uniquely 
compatible. 

Let A be a finite subset of an ortho-algebra L. We say that A is jointly 
compatible if there is a (finite) jointly orthogonal subset T of L such that 
Ac__ {~ To: To___ T}. It is easy to see that if A is jointly compatible then it 
is pairwise compatible: again, however, the converse is not true. We may 
now define the two notions of coherence on an ortho-algebra: 

Definitions. (I) An ortho-algebra is called orthocoherent if every finite 
subset that is pairwise orthogonal is jointly orthogonal. 

(2) An ortho-algebra is called compatibly coherent if every finite subset 
that is pairwise compatible is jointly compatible. 

It is easy to see that if an ortho-algebra is compatibly coherent then it 
is orthocoherent. An example of an ortho-algebra which is orthocoherent 
but not compatibly coherent may be found in Pool (see Pool, 1963). It can 
be shown that if L is an orthocoherent ortho-algebra, then L is transitive 
if and only if L is associative. 

Theorem. Let L be an associative ortho-algebra. If L is orthocoherent, 
then L satisfies the unique Mackey decomposition property. 

Proof Let a, b be compatible elements, and suppose {ao, bo, c} and 
{a~, b~, d} are two Mackey decompositions for the pair a, b. Let x = aoO bog  
c. Since d -< a and a -< x, by associativity (and hence transitivity) of L, we 
have d -< x. Similarly, al -- x and bl -< x. Therefore, d .L x', al _L x', and bl _1_ x'. 
By orthocoherence, we have (al O b~ O d) J_ x', and hence (a~ �9 bl �9 d) --- x = 
[(aoOboOc). By symmetry, then, we have alObaOd=aoOboOc. SincO 
alOdObl=aObl=aoOcObl, and aoOcObo=aoOb=aoOdObl, we 
have (aoO bOO c___ = (aoO bOO d and hence d = d. It then follows immedi- 
ately that ao= a~ and bo = bl, and we are done. �9 

The converse of this theorem is not true, as an example given in Part 
II of this paper will illustrate. 
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Fig. 1. Conditions on an ortho-algebra. 

We have defined the following primary conditions on an ortho-algebra: 
transitivity (T), associativity (A), unique Mackey decomposit ion property 
(U), orthocoherence (O), and compatible coherence (C). We include Figure 
1 to emphasize the connections between these conditions. 

5. THE BOOLEAN  STRUCTURE OF ORTHO-ALGEBRAS 

In order to recover the Boolean block structure of  an ortho-algebra, 
we first consider what conditions we must impose on an ortho-algebra so 
that the resulting structure is a Boolean algebra. Clearly, such an ortho- 
algebra must be associative. We will show that an associative ortho-algebra 
is an or thomodular  partially ordered set if and only if it is orthocoherent,  
and is a Boolean algebra if and only if it is orthocoherent and pairwise 
compatible. These results derive from work by Foulis and Randall. 

We need the following lemmas: 

Lemma 1. Let L be an associative ortho-algebra with a, b ~ L and 
a ' •  I f  L is orthocoherent,  then a ^ b exists and a ^ b = (a'•b') ' .  

Proof. Clearly, a' <_ a'O3b', so (a 'Qb ' )  '< - a. Similarly, ( a ' ~ b ' )  ' < - b, so 
( a ' ~  b')' is a lower bound for a and b. Suppose C <- a, b. Then c • a' and 
c • b' and, thus, by orthocoherence, c • ( a ' ~  b'). Therefore, c -< ( a ' G  b') '  and 
we are done. �9 

Lemma 2. Let L be an associative ortho-algebra. I f  a, b, c ~ L with 
a • b and a • c, then b -< c if and only if (a@ b) --- (a@ c). 

Proof. Let a, b, c ~ L with a • b, a • c, and b - c. Then b • c' and hence 
b • ( a O (  a G  c)') .By associativity, b@( a ~ (  a ~  c)') = (bE) a ) ~ (  a ~  c)' ,and 
thus ( b O a ) •  and we have ( b@a)<_(a~c ) .  

Conversely, let (aOb)<-(a03c) .  Then (a@c) '<- (aGb)  ', and by the 
first half  of  this proof, we have a O ( a G c )  '< - aG(aE)b ) ' .  Therefore, c ' -  < b' 
and so b-<c  as required. �9 
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Lemma 3. Let L be an associative ortho-algebra.  Then (i) a • b in L 
implies a q3 b is a minimal  upper  bound  for  a and b, and (ii) L is or thocoher-  
ent if and only if a • b in L implies a v b exists and a v b = a ~ b. 

Proof. (i) Let a _1. b in L. Clearly, a �9 b is an upper  b o u n d  for  a and 
b. Suppose  a,b<-k<-aO3b. Then there is an x in L with k ( ~ x = a ~ b .  
Therefore,  l = ( k O x ) O ( a O b ) ' = k O ( x G ( a O b ) ' )  and we have k ' = x O  
( a G b)'. Thus x G ( a �9 b) '  = k' <- a' = b �9 ( a ~ b)', a n d  by Lemma 2, we have 
x -  b. Similarly, x-< a, and since a • b we have x = 0 and we are done. 

(ii) Let L be or thocoherent ,  and let a • b in L. Let c ~ L with a, b -< c. 
Then a •  and b Z c ' ,  and by or thocoherence ,  we have ( a G b ) z c '  so 
(a  03 b) - c and we are done.  Conversely,  let {a, b, c} be a pairwise or thogonal  
set. Then a<-c ' and b<-c ' so by assumpt ion a O b < - c  ' and we have ( a G  
b) Z c. By associativity, then, {a, b, c} is a joint ly or thogonal  set. By a similar 
argument  and induct ion on the size o f  the set, it follows that  L is 
or thocoherent .  �9 

We will use the fol lowing definition o f  an o r thomodula r  partially 
ordered set, and include it here for reference: 

Definition. Let (P, - )  be a partially ordered set with a map  ': P-> P 
defined on P, denoted  a-> a' .  Then P is called an orthomodular partially 
ordered set if it satisfies the following condit ions for all a, b c P:  (i) if a - b, 
then b'<-a'; (ii) ( a ' ) ' = a ;  (iii) if a<_b then a v ( b ^ a ' )  exists and b = a v  

(b^ a'i. 
Theorem. Let L be an associative ortho-algebra.  Then L is an 

o r thomodu la r  partially ordered set if and only if  L is or thocoherent .  

Proof. Let L be an o r thomodu la r  partially ordered set, and let a • b 
in L. By Lemma 3, it suffices to show a v b exists in L and a v b = a (~ b. 
Since a Z b, we have a - b '  and by (iii) o f  the above definition, we see b ' ^  a '  
exists. Thus,  (b' ^ a')' = a v b and a v b exists, so a v b <~ a@ b. B u t b y  Lemma 
3(i), we have a v b = a(~b  and we are done.  

Conversely,  let L be or thocoherent .  Clearly L satisfies propert ies (i) 
and (ii) o f  the above definition, so it remains to show proper ty  (iii). Let 
a -< b in L. Then a • b' and so b = a ~ (a  G b ') '  = (by Lemma 1 ) a E) ( a '  ^ b) = 
(by Lemma 3) a v (a '  ^ b), and we are done.  �9 

Theorem. Let L be an associative ortho-algebra.  Then L is a Boolean 
algebra if  and  only if L is or thocoherent  and pairwise compatible.  

Proof. Let L be an associative or tho-algebra  which is also a Boolean 
algebra. By the preceding theorem, L is or thocoherent .  Let a, b ~ L. We 
must  find a Mackey  decompos i t ion  for a and b. Let c = a ^ b. Then c - a, b 
so we have a = c O ( c G a ' ) '  and b = c G ( c O b ' ) ' .  We must  show ( c G  
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a')'• We have ( e O a ' ) ' = ( b y  Lemma 1) a ^ c ' = a ^ ( a ^ b ) ' = a ^  
( a ' v  b') = (since L is a Boolean algebra) a A b ' - b ' - - - ( c O  b'). Thus ( cO  
a')'_l_(cOb')' and, by orthocoherence, we have {c, (cOa')', ( cOb ' ) ' }  is a 
Mackey decomposit ion for a, b. 

Conversely, let L be orthocoherent and pairwise compatible. Then L 
is an or thomodular  partially ordered set. Claim: L is a lattice. Let a, b e L, 
and let {ao, bo, c} be a Mackey decomposit ion for a, b. Let  a, b-< x. Then 
ao, b -  x, and by Lemma 3, aoO b <- x. Thus, a v b exists, and is equal to 
aoOboOc. Dually, a ^ b = ( a ' v  b') '  and L is a lattice. Claim: L is uniquely 
complemented.  Let a v b = l  and a A b = 0 .  Let {ao, b0, e} be a Mackey 
decomposit ion for a, b. Then c - a, b so c = 0, and we see a L b. Thus b = a '  
and we are done. �9 

Definition. Let L be an ortho-algebra, and let A be a nonempty subset 
of  L. Then A is said to be a sub-ortho-algebra of  L if it satisfies the following 
conditions: (i) if a c A, then a'~A; (ii) if a, b e A with a • b, then aObcA .  

It is easy to see that if A is a sub-ortho-algebra of L, then 0, 1 e A and 
A is itself an ortho-algebra under the inherited operations. As a corollary 
to the above theorem, we see that a sub-ortho-algebra A of an ortho-algebra 
L has the structure of a Boolean algebra if and only if A is associative, 
orthocoherent,  and pairwise compatible. 

Definition. Let L be an ortho-algebra, A a sub-ortho-algebra of  L. Then 
A is called a compatible sub-ortho-algebra of L if A has the structure of  a 
Boolean algebra under the inherited operations. A maximal compatible 
sub-ortho-algebra of  L is called a (Boolean) block of L. 

We wish to extend the definitions of  jointly orthogonal and jointly 
compatible to include infinite subsets of an ortho-algebra L. First, we need 
the following theorem: 

Theorem. Let A be a finite subset of  an ortho-albegra L. Then (1) A 
is jointly orthogonal if and only if it is contained in a compatible sub-ortho- 
algebra and is pairwise orthogonal;  (2) A is jointly compatible if  and only 
if it is contained in a compatible sub-ortho-algebra. 

Proof (1) Let A be jointly orthogonal. Define A + = A u {(Y. A)'}. Using 
property (vi) in the definition of an ortho-algebra, it can be shown that A + 
is jointly orthogonal. Let S = {Y. A0: Ao C _ A+}. By the definition of jointly 
orthogonal, S is associative and orthocoherent. Let a, b e  S, say, a =Y~ A1 
and b = ~  A 2 with A1, A2_c A +. It can be shown that {Y~ ( A I - A 2 ) ,  ~ (A2- 
A0,  ~ (A1 ~A2)} is a Mackey decomposit ion for a, b in S, and so S is 
pairwise compatible. Therefore, S is a compatible sub-ortho-algebra, and 
we are done. The converse is easily seen to be true. 

(2) This is a direct corollary to 1. �9 
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Now, for an arbitrary subset A of an ortho-algebra L, we say A is 
jointly compatible if it is contained in a compatible sub-ortho-algebra, and 
we say A is jointly orthogonal if it is jointly compatible and pairwise 
orthogonal. 

6. EQUIVALENCE OF ORTHO-ALGEBRAS AND BOOLEAN 
ATLASES 

Theorem. (1) Every Boolean atlas defines an ortho-algebra in a natural 
way. 

(2) Every ortho-algebra defines a Boolean atlas in a natural way. 

Proof (1) Let ~ =(Bi:  i~I)  be a Boolean atlas. We define an ortho- 
algebra as follows: L=UBi, 0=0~ and 1 = li for any icI,  a'= Ci(a) for 
any i such that a ~  Bi, we say a_Lb if there is an i~ I with a, b c  Bi and 
M~(a,b)=O, and, if a_Lb, aOb is defined to be J~(a,b) for any i with 
a, b ~ B~. It is clear that these definitions are well defined, and it can be 
shown that the properties of an ortho-algebra are satisfied. 

(2) Let L be an ortho-algebra. Let (B~: i ~ I )  be the set of  blocks on 
L. It is clear that properties (i)-(iv) in the definition of a Boolean atlas are 
satisfied b y t h i s  set. To see property (v), let a, b e  Bi with M~(a, b ) = 0 .  B~ 
is pairwise compatible, so there is a Mackey decomposit ion {ao, bo, c} for 
a, b in Bi. But then c -< a, b and so c = 0 and we have a • b. Thus, by Lemma 
3 and orthocoherence of B~, we have J~(a, b) = aOb, and we are done. �9 

Note that the conditions for a sub-ortho-algebra to be a compatible 
sub-ortho-algebra are finite in nature. Therefore, by Zorn's  lemma, we see 
that every compatible sub-ortho-algebra is contained in a block. Further- 
more, for every element a in an ortho-algebra L, the set {0, a, a ' ,  1} is a 
compatible subortho-algebra of  L, so every element of  L is contained in at 
least one block. Hence the set of elements of  the Boolean atlas associated 
with an ortho-algebra L is identical to the original elements in L. Further- 
more, if L is an ortho-algebra and we construct the corresponding Boolean 
atlas, and then, from this, construct the corresponding ortho-algebra as 
described above, this ortho-algebra will be identical to the original one. If, 
however, we start with a Boolean atlas, construct the corresponding ortho- 
algebra and then the corresponding Boolean atlas, the resulting atlas may 
be larger. Whereas every one of the original Boolean algebras is a block, 
there may be blocks that are not among the original Boolean algebras. This 
procedure of  obtaining a (perhaps) larger Boolean atlas from an initial 
Boolean atlas ~ is called filling out ~. I f  the resulting atlas is identical to 
the original one, we say that ~ is full. Notice that the atlas of blocks on 
an ortho-algebra is always full. 



52 Lock and Hardegree 

It can be shown that our definitions of orthogonal, compatible, jointly 
orthogonal, and jointly compatible on an ortho-algebra carry over to their 
namesakes on a Boolean atlas, and vice-versa. Hence, our definitions of 
orthocoherence and compatible coherence on ortho-algebras may be 
extended to the equivalent notions on Boolean atlases. 

In a Boolean atlas, it is clear that if two elements are not in a common 
block, their meet and join may not exist. In addition, however, even if we 
have a, b ~ Bi with a 3_b, the local supremum (a@ b) need not be a global 
supremum. An example illustrating this will be included in Part II. In fact, 
it is easily seen that a ~ b being a global supremum for every orthogonal 
pair a, b in an ortho-algebra is equivalent to orthocoherence. It is not hard 
to show that the associated Boolean atlas to an ortho-algebra L is a 
Boolean manifold if and only if L satisfies the unique Mackey decomposition 
property. 

7. SUMMARY 

Of the previous work done in the area of quantum logics, we see that 
the most general system is that of Foulis and Randall. The logic associated 
with a manual, called an operational logic (OL), will be shown in Part II 
of this paper to be an associative ortho-algebra. The quantum mechanical 
systems discussed by Domotar are equivalent to Boolean manifolds (BM), 
or ortho-algebras which satisfy the unique Mackey decomposition property. 
We showed earlier that orthomodular partially ordered sets (OMP) are 
orthocoherent associative ortho-algebras, or, equivalently, full Boolean 
atlases in which every orthogonal pair has a global supremum. Finally, 
partial Boolean algebras (PBA), as defined by Kochen and Specker, are 
Boolean manifolds which are compatible coherent, or, equivalently, compat- 
ibly coherent ortho-algebras. Gudder  (1972) had shown previously, as we 
see here, that an orthomodular partially ordered set is a partial Boolean 
algebra if and only if it is compatibly coherent, and that a partial Boolean 
algebra is an orthomodular partially ordered set if and only if it is transitive. 
Thus, the common system is the class of transitive partial Boolean algebras, 
or, equivalently, the class of compatibly coherent orthomodular partially 
ordered sets, or, as we now see, compatibly coherent associative ortho- 
algebras. 

Figure 2 corresponds directly to Figure 1. In it, we have labeled the 
nodes with the appropriate system, and the edges with the condition(s) 
required to obtain that system. The major quantum logical systems, as just 
described, are in boxes. The intermediate systems included are transitive 
ortho-algebras (TOA), transitive Boolean manifolds (TBM), associative 
Boolean manifolds (ABM), orthocoherent ortho-algebras (OOA), and corn- 
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I - ~  U 0 C 
ABM ~ ~ ~ GAOA 

TBM A T A = 

F6-  0 o ooA c 

Fig. 2. Quantum logical systems. 

patibly coherent associative ortho-algebras (CAOA). The conditions are 
labeled as in Figure 1. 
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